A phylogenomic study of the MutS family of proteins

Research output: Contribution to journalArticle

152 Citations (Scopus)

Abstract

The MutS protein of Escherichia coli plays a key role in the recognition and repair of errors made during the replication of DNA. Homologs of MutS have been found in many species including eukaryotes, Archaea and other bacteria, and together these proteins have been grouped into the MutS family. Although many of these proteins have similar activities to the E.coli MutS, there is significant diversity of function among the MutS family members. This diversity is even seen within species; many species encode multiple MutS homologs with distinct functions. To better characterize the MutS protein family, I have used a combination of phylogenetic reconstructions and analysis of complete genome sequences. This phylogenomic analysis is used to infer the evolutionary relationships among the MutS family members and to divide the family into subfamilies of orthologs. Analysis of the distribution of these orthologs in particular species and examination of the relationships within and between subfamilies is used to identify likely evolutionary events (e.g. gene duplications, lateral transfer and gene loss) in the history of the MutS family. In particular, evidence is presented that a gene duplication early in the evolution of life resulted in two main MutS lineages, one including proteins known to function in mismatch repair and the other including proteins known to function in chromosome segregation and crossing-over. The inferred evolutionary history of the MutS family is used to make predictions about some of the uncharacterized genes and species included in the analysis. For example, since function is generally conserved within subfamilies and lineages, it is proposed that the function of uncharacterized proteins can be predicted by their position in the MutS family tree. The uses of phylogenomic approaches to the study of genes and genomes are discussed.

Original languageEnglish (US)
Pages (from-to)4291-4300
Number of pages10
JournalNucleic Acids Research
Volume26
Issue number18
DOIs
StatePublished - Sep 15 1998
Externally publishedYes

Fingerprint

Proteins
Gene Duplication
Genome
Horizontal Gene Transfer
Chromosome Segregation
DNA Mismatch Repair
Escherichia coli Proteins
Archaea
Pedigree
Eukaryota
DNA Replication
Genes
History
Escherichia coli
Bacteria

ASJC Scopus subject areas

  • Genetics

Cite this

A phylogenomic study of the MutS family of proteins. / Eisen, Jonathan A.

In: Nucleic Acids Research, Vol. 26, No. 18, 15.09.1998, p. 4291-4300.

Research output: Contribution to journalArticle

@article{c50935a02e60439e9f6f8ab8c90aa7e0,
title = "A phylogenomic study of the MutS family of proteins",
abstract = "The MutS protein of Escherichia coli plays a key role in the recognition and repair of errors made during the replication of DNA. Homologs of MutS have been found in many species including eukaryotes, Archaea and other bacteria, and together these proteins have been grouped into the MutS family. Although many of these proteins have similar activities to the E.coli MutS, there is significant diversity of function among the MutS family members. This diversity is even seen within species; many species encode multiple MutS homologs with distinct functions. To better characterize the MutS protein family, I have used a combination of phylogenetic reconstructions and analysis of complete genome sequences. This phylogenomic analysis is used to infer the evolutionary relationships among the MutS family members and to divide the family into subfamilies of orthologs. Analysis of the distribution of these orthologs in particular species and examination of the relationships within and between subfamilies is used to identify likely evolutionary events (e.g. gene duplications, lateral transfer and gene loss) in the history of the MutS family. In particular, evidence is presented that a gene duplication early in the evolution of life resulted in two main MutS lineages, one including proteins known to function in mismatch repair and the other including proteins known to function in chromosome segregation and crossing-over. The inferred evolutionary history of the MutS family is used to make predictions about some of the uncharacterized genes and species included in the analysis. For example, since function is generally conserved within subfamilies and lineages, it is proposed that the function of uncharacterized proteins can be predicted by their position in the MutS family tree. The uses of phylogenomic approaches to the study of genes and genomes are discussed.",
author = "Eisen, {Jonathan A}",
year = "1998",
month = "9",
day = "15",
doi = "10.1093/nar/26.18.4291",
language = "English (US)",
volume = "26",
pages = "4291--4300",
journal = "Nucleic Acids Research",
issn = "0305-1048",
publisher = "Oxford University Press",
number = "18",

}

TY - JOUR

T1 - A phylogenomic study of the MutS family of proteins

AU - Eisen, Jonathan A

PY - 1998/9/15

Y1 - 1998/9/15

N2 - The MutS protein of Escherichia coli plays a key role in the recognition and repair of errors made during the replication of DNA. Homologs of MutS have been found in many species including eukaryotes, Archaea and other bacteria, and together these proteins have been grouped into the MutS family. Although many of these proteins have similar activities to the E.coli MutS, there is significant diversity of function among the MutS family members. This diversity is even seen within species; many species encode multiple MutS homologs with distinct functions. To better characterize the MutS protein family, I have used a combination of phylogenetic reconstructions and analysis of complete genome sequences. This phylogenomic analysis is used to infer the evolutionary relationships among the MutS family members and to divide the family into subfamilies of orthologs. Analysis of the distribution of these orthologs in particular species and examination of the relationships within and between subfamilies is used to identify likely evolutionary events (e.g. gene duplications, lateral transfer and gene loss) in the history of the MutS family. In particular, evidence is presented that a gene duplication early in the evolution of life resulted in two main MutS lineages, one including proteins known to function in mismatch repair and the other including proteins known to function in chromosome segregation and crossing-over. The inferred evolutionary history of the MutS family is used to make predictions about some of the uncharacterized genes and species included in the analysis. For example, since function is generally conserved within subfamilies and lineages, it is proposed that the function of uncharacterized proteins can be predicted by their position in the MutS family tree. The uses of phylogenomic approaches to the study of genes and genomes are discussed.

AB - The MutS protein of Escherichia coli plays a key role in the recognition and repair of errors made during the replication of DNA. Homologs of MutS have been found in many species including eukaryotes, Archaea and other bacteria, and together these proteins have been grouped into the MutS family. Although many of these proteins have similar activities to the E.coli MutS, there is significant diversity of function among the MutS family members. This diversity is even seen within species; many species encode multiple MutS homologs with distinct functions. To better characterize the MutS protein family, I have used a combination of phylogenetic reconstructions and analysis of complete genome sequences. This phylogenomic analysis is used to infer the evolutionary relationships among the MutS family members and to divide the family into subfamilies of orthologs. Analysis of the distribution of these orthologs in particular species and examination of the relationships within and between subfamilies is used to identify likely evolutionary events (e.g. gene duplications, lateral transfer and gene loss) in the history of the MutS family. In particular, evidence is presented that a gene duplication early in the evolution of life resulted in two main MutS lineages, one including proteins known to function in mismatch repair and the other including proteins known to function in chromosome segregation and crossing-over. The inferred evolutionary history of the MutS family is used to make predictions about some of the uncharacterized genes and species included in the analysis. For example, since function is generally conserved within subfamilies and lineages, it is proposed that the function of uncharacterized proteins can be predicted by their position in the MutS family tree. The uses of phylogenomic approaches to the study of genes and genomes are discussed.

UR - http://www.scopus.com/inward/record.url?scp=0032530155&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=0032530155&partnerID=8YFLogxK

U2 - 10.1093/nar/26.18.4291

DO - 10.1093/nar/26.18.4291

M3 - Article

C2 - 9722651

AN - SCOPUS:0032530155

VL - 26

SP - 4291

EP - 4300

JO - Nucleic Acids Research

JF - Nucleic Acids Research

SN - 0305-1048

IS - 18

ER -