TY - JOUR
T1 - A new model of progressive pulmonary fibrosis in rats
AU - Last, Jerold A
AU - Gelzleichter, T. R.
AU - Pinkerton, Kent E
AU - Walker, R. M.
AU - Witschi, H.
PY - 1993
Y1 - 1993
N2 - Sprague-Dawley rats were exposed for 6 h daily to 0.8 ppm of ozone and 14.4 ppm of nitrogen dioxide. Approximately 7 to 10 wk after the initiation of exposure, animals began to demonstrate respiratory insufficiency and severe weight loss. About half of the rats died between Days 55 and 78 of exposure; no overt ill effects were observed in animals exposed to filtered air, to ozone alone, or to nitrogen dioxide. Biochemical findings in animals exposed to ozone and nitrogen dioxide included increased lung content of DNA, protein, collagen, and elastin, which was about 300% higher than the control values. The collagen-specific crosslink hydroxypyridinium, a biomarker for mature collagen in the lung, was decreased by about 40%. These results are consistent with extensive breakdown and remodeling of the lung parenchyma and its associated vasculature. Histopathologic evaluation showed severe fibrosis, alveolar collapse, honeycombing, macrophage and mast cell accumulation, vascular smooth muscle hypertrophy, and other indications of severe progressive interstitial pulmonary fibrosis and end-stage lung disease. This unique animal model of progressive pulmonary fibrosis resembles the final stages of human idiopathic pulmonary fibrosis and should facilitate studying underlying mechanisms and potential therapy of progressive pulmonary fibrosis.
AB - Sprague-Dawley rats were exposed for 6 h daily to 0.8 ppm of ozone and 14.4 ppm of nitrogen dioxide. Approximately 7 to 10 wk after the initiation of exposure, animals began to demonstrate respiratory insufficiency and severe weight loss. About half of the rats died between Days 55 and 78 of exposure; no overt ill effects were observed in animals exposed to filtered air, to ozone alone, or to nitrogen dioxide. Biochemical findings in animals exposed to ozone and nitrogen dioxide included increased lung content of DNA, protein, collagen, and elastin, which was about 300% higher than the control values. The collagen-specific crosslink hydroxypyridinium, a biomarker for mature collagen in the lung, was decreased by about 40%. These results are consistent with extensive breakdown and remodeling of the lung parenchyma and its associated vasculature. Histopathologic evaluation showed severe fibrosis, alveolar collapse, honeycombing, macrophage and mast cell accumulation, vascular smooth muscle hypertrophy, and other indications of severe progressive interstitial pulmonary fibrosis and end-stage lung disease. This unique animal model of progressive pulmonary fibrosis resembles the final stages of human idiopathic pulmonary fibrosis and should facilitate studying underlying mechanisms and potential therapy of progressive pulmonary fibrosis.
UR - http://www.scopus.com/inward/record.url?scp=0027221013&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=0027221013&partnerID=8YFLogxK
M3 - Article
C2 - 8342914
AN - SCOPUS:0027221013
VL - 148
SP - 487
EP - 494
JO - American Review of Respiratory Disease
JF - American Review of Respiratory Disease
SN - 1073-449X
IS - 2
ER -