A learning algorithm for visual pose estimation of continuum robots

Austin Reiter, Roger E. Goldman, Andrea Bajo, Konstantinos Iliopoulos, Nabil Simaan, Peter K. Allen

Research output: Chapter in Book/Report/Conference proceedingConference contribution

14 Scopus citations

Abstract

Continuum robots offer significant advantages for surgical intervention due to their down-scalability, dexterity, and structural flexibility. While structural compliance offers a passive way to guard against trauma, it necessitates robust methods for online estimation of the robot configuration in order to enable precise position and manipulation control. In this paper, we address the pose estimation problem by applying a novel mapping of the robot configuration to a feature descriptor space using stereo vision. We generate a mapping of known features through a supervised learning algorithm that relates the feature descriptor to known ground truth. Features are represented in a reduced sub-space, which we call eigen-features. The descriptor provides some robustness to occlusions, which are inherent to surgical environments, and the methodology that we describe can be applied to multi-segment continuum robots for closed-loop control. Experimental validation on a single-segment continuum robot demonstrates the robustness and efficacy of the algorithm for configuration estimation. Results show that the errors are in the range of 1°.

Original languageEnglish (US)
Title of host publicationIROS'11 - 2011 IEEE/RSJ International Conference on Intelligent Robots and Systems
Subtitle of host publicationCelebrating 50 Years of Robotics
Pages2390-2396
Number of pages7
DOIs
StatePublished - 2011
Externally publishedYes
Event2011 IEEE/RSJ International Conference on Intelligent Robots and Systems: Celebrating 50 Years of Robotics, IROS'11 - San Francisco, CA, United States
Duration: Sep 25 2011Sep 30 2011

Publication series

NameIEEE International Conference on Intelligent Robots and Systems

Conference

Conference2011 IEEE/RSJ International Conference on Intelligent Robots and Systems: Celebrating 50 Years of Robotics, IROS'11
CountryUnited States
CitySan Francisco, CA
Period9/25/119/30/11

ASJC Scopus subject areas

  • Control and Systems Engineering
  • Software
  • Computer Vision and Pattern Recognition
  • Computer Science Applications

Fingerprint Dive into the research topics of 'A learning algorithm for visual pose estimation of continuum robots'. Together they form a unique fingerprint.

Cite this