TY - JOUR
T1 - A 1-D model to explore the effects of tissue loading and tissue concentration gradients in the revised Starling principle
AU - Zhang, Xiaobing
AU - Adamson, Roger H.
AU - Curry, Fitz Roy E
AU - Weinbaum, Sheldon
PY - 2006
Y1 - 2006
N2 - The recent experiments in Hu et al. (Am J Physiol Heart Circ Physiol 279: H1724-H1736, 2000) and Adamson et al. (J Physiol 557: 889-907, 2004) in frog and rat mesentery microvessels have provided strong evidence supporting the Michel-Weinbaum hypothesis for a revised asymmetric Starling principle in which the Starling force balance is applied locally across the endothelial glycocalyx layer rather than between lumen and tissue. These experiments were interpreted by a three-dimensional (3-D) mathematical model (Hu et al.; Microvasc Res 58: 281-304, 1999) to describe the coupled water and albumin fluxes in the glycocalyx layer, the cleft with its tight junction strand, and the surrounding tissue. This numerical 3-D model converges if the tissue is at uniform concentration or has significant tissue gradients due to tissue loading. However, for most physiological conditions, tissue gradients are two to three orders of magnitude smaller than the albumin gradients in the cleft, and the numerical model does not converge. A simpler multilayer one-dimensional (1-D) analytical model has been developed to describe these conditions. This model is used to extend Michel and Phillips's original 1-D analysis of the matrix layer (J Physiol 388: 421-435, 1987) to include a cleft with a tight junction strand, to explain the observation of Levick (Exp Physiol 76: 825-857, 1991) that most tissues have an equilibrium tissue concentration that is close to 0.4 lumen concentration, and to explore the role of vesicular transport in achieving this equilibrium. The model predicts the surprising finding that one can have steady-state reabsorption at low pressures, in contrast to the experiments in Michel and Phillips, if a backward-standing gradient is established in the cleft that prevents the concentration from rising behind the glycocalyx.
AB - The recent experiments in Hu et al. (Am J Physiol Heart Circ Physiol 279: H1724-H1736, 2000) and Adamson et al. (J Physiol 557: 889-907, 2004) in frog and rat mesentery microvessels have provided strong evidence supporting the Michel-Weinbaum hypothesis for a revised asymmetric Starling principle in which the Starling force balance is applied locally across the endothelial glycocalyx layer rather than between lumen and tissue. These experiments were interpreted by a three-dimensional (3-D) mathematical model (Hu et al.; Microvasc Res 58: 281-304, 1999) to describe the coupled water and albumin fluxes in the glycocalyx layer, the cleft with its tight junction strand, and the surrounding tissue. This numerical 3-D model converges if the tissue is at uniform concentration or has significant tissue gradients due to tissue loading. However, for most physiological conditions, tissue gradients are two to three orders of magnitude smaller than the albumin gradients in the cleft, and the numerical model does not converge. A simpler multilayer one-dimensional (1-D) analytical model has been developed to describe these conditions. This model is used to extend Michel and Phillips's original 1-D analysis of the matrix layer (J Physiol 388: 421-435, 1987) to include a cleft with a tight junction strand, to explain the observation of Levick (Exp Physiol 76: 825-857, 1991) that most tissues have an equilibrium tissue concentration that is close to 0.4 lumen concentration, and to explore the role of vesicular transport in achieving this equilibrium. The model predicts the surprising finding that one can have steady-state reabsorption at low pressures, in contrast to the experiments in Michel and Phillips, if a backward-standing gradient is established in the cleft that prevents the concentration from rising behind the glycocalyx.
KW - Capillary permeability
KW - Endothelial glycocalyx
KW - Tight junction
KW - Vesicular transport
UR - http://www.scopus.com/inward/record.url?scp=33845395242&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=33845395242&partnerID=8YFLogxK
U2 - 10.1152/ajpheart.01160.2005
DO - 10.1152/ajpheart.01160.2005
M3 - Article
C2 - 16905594
AN - SCOPUS:33845395242
VL - 291
JO - American Journal of Physiology - Renal Fluid and Electrolyte Physiology
JF - American Journal of Physiology - Renal Fluid and Electrolyte Physiology
SN - 1931-857X
IS - 6
ER -