2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) modulates function of human luteinizing granulosa cells via cAMP signaling and early reduction of glucose transporting activity

Essam Enan, Bill Lasley, Dennis Stewart, James Overstreet, Catherine A. Vandevoort

Research output: Contribution to journalArticle

59 Citations (Scopus)

Abstract

This study examined the changes in cellular glucose uptake, cAMP-dependent protein kinase (PKA), and progesterone production induced by 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) in human luteinizing granulosa cells (LGCs) in culture. The role of Ah receptor on TCDD-mediated toxicity in human LGCs was investigated. Treatment of human LGCs with TCDD produced a time- and dose-dependent decrease in the cellular uptake of glucose. The Vmax and the Km of glucose transport were decreased by TCDD treatment. Furthermore, cytochalasin B, a specific inhibitor of faciliative glucose transporter proteins, totally abolished the portion of glucose transport activity that is sensitive to TCDD. Pretreatment of the cells with the Ah receptor blockers 4,7-phenanthroline and alpha-naphthoflavone antagonised the effect of TCDD on 3H-Me-glucose uptake. Structure-activity relationship studies with TCDD and three dioxin congeners revealed a rank order for their potency in the inhibition of glucose transport as follows: TCDD > 1,2,3,7,8-PCDD > 1,2,4,7,8-PCDD > 2,7-DCDD. Such a rank order is consistent with the previously determined biological activity of TCDD and the other dioxin congeners. Treatment of cells for 48 h with 10 nM TCDD substantially reduced PKA and progesterone production. The inhibitory effect of TCDD on progesterone production was more pronounced in the presence of insulin (10 μg/mL) and D-glucose (13.3 mM). However, cytochalasin B abolished the effect of TCDD on progesterone production. Forskolin (adenylate cyclase activator) abolished the effect of TCDD on glucose uptake and progesterone production but it did not affect the action of TCDD on PKA activity. A relationship between glucose transporting activity and progesterone production in human LGCs treated with TCDD is indicated by several lines of evidence: a) cytochalasin B downregulated glucose transporting activity and progesterone production, b) insulin plus D-glucose downregulated glucose uptake and amplified the negative effect of TCDD on progesterone production, and c) forskolin abolished the negative effect of TCDD on glucose transporting activity and on progesterone production. From the present data we conclude that glucose transporting activity can be used as a sensitive biomarker to detect the very early response to TCDD in human steroid-producing cells and that effect of TCDD on steroid production is mediated through the cAMP-dependent protein kinase.

Original languageEnglish (US)
Pages (from-to)191-198
Number of pages8
JournalReproductive Toxicology
Volume10
Issue number3
StatePublished - 1996

Fingerprint

Granulosa Cells
Glucose
Progesterone
Cytochalasin B
Polychlorinated Dibenzodioxins
1,4-dioxin
Dioxins
Colforsin
Cyclic AMP-Dependent Protein Kinases
Protein Kinases
Down-Regulation
Steroids
Cells
Insulin
Aryl Hydrocarbon Receptors
Facilitative Glucose Transport Proteins

Keywords

  • cAMP signaling
  • Glucose transporters
  • Human luteinizing granulosa cells
  • Progesterone
  • TCDD

ASJC Scopus subject areas

  • Toxicology

Cite this

2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) modulates function of human luteinizing granulosa cells via cAMP signaling and early reduction of glucose transporting activity. / Enan, Essam; Lasley, Bill; Stewart, Dennis; Overstreet, James; Vandevoort, Catherine A.

In: Reproductive Toxicology, Vol. 10, No. 3, 1996, p. 191-198.

Research output: Contribution to journalArticle

Enan, Essam ; Lasley, Bill ; Stewart, Dennis ; Overstreet, James ; Vandevoort, Catherine A. / 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) modulates function of human luteinizing granulosa cells via cAMP signaling and early reduction of glucose transporting activity. In: Reproductive Toxicology. 1996 ; Vol. 10, No. 3. pp. 191-198.
@article{58f929dca8aa4c6e8f0a70009e2af515,
title = "2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) modulates function of human luteinizing granulosa cells via cAMP signaling and early reduction of glucose transporting activity",
abstract = "This study examined the changes in cellular glucose uptake, cAMP-dependent protein kinase (PKA), and progesterone production induced by 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) in human luteinizing granulosa cells (LGCs) in culture. The role of Ah receptor on TCDD-mediated toxicity in human LGCs was investigated. Treatment of human LGCs with TCDD produced a time- and dose-dependent decrease in the cellular uptake of glucose. The Vmax and the Km of glucose transport were decreased by TCDD treatment. Furthermore, cytochalasin B, a specific inhibitor of faciliative glucose transporter proteins, totally abolished the portion of glucose transport activity that is sensitive to TCDD. Pretreatment of the cells with the Ah receptor blockers 4,7-phenanthroline and alpha-naphthoflavone antagonised the effect of TCDD on 3H-Me-glucose uptake. Structure-activity relationship studies with TCDD and three dioxin congeners revealed a rank order for their potency in the inhibition of glucose transport as follows: TCDD > 1,2,3,7,8-PCDD > 1,2,4,7,8-PCDD > 2,7-DCDD. Such a rank order is consistent with the previously determined biological activity of TCDD and the other dioxin congeners. Treatment of cells for 48 h with 10 nM TCDD substantially reduced PKA and progesterone production. The inhibitory effect of TCDD on progesterone production was more pronounced in the presence of insulin (10 μg/mL) and D-glucose (13.3 mM). However, cytochalasin B abolished the effect of TCDD on progesterone production. Forskolin (adenylate cyclase activator) abolished the effect of TCDD on glucose uptake and progesterone production but it did not affect the action of TCDD on PKA activity. A relationship between glucose transporting activity and progesterone production in human LGCs treated with TCDD is indicated by several lines of evidence: a) cytochalasin B downregulated glucose transporting activity and progesterone production, b) insulin plus D-glucose downregulated glucose uptake and amplified the negative effect of TCDD on progesterone production, and c) forskolin abolished the negative effect of TCDD on glucose transporting activity and on progesterone production. From the present data we conclude that glucose transporting activity can be used as a sensitive biomarker to detect the very early response to TCDD in human steroid-producing cells and that effect of TCDD on steroid production is mediated through the cAMP-dependent protein kinase.",
keywords = "cAMP signaling, Glucose transporters, Human luteinizing granulosa cells, Progesterone, TCDD",
author = "Essam Enan and Bill Lasley and Dennis Stewart and James Overstreet and Vandevoort, {Catherine A.}",
year = "1996",
language = "English (US)",
volume = "10",
pages = "191--198",
journal = "Reproductigve Toxicoloy",
issn = "0890-6238",
publisher = "Elsevier Inc.",
number = "3",

}

TY - JOUR

T1 - 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) modulates function of human luteinizing granulosa cells via cAMP signaling and early reduction of glucose transporting activity

AU - Enan, Essam

AU - Lasley, Bill

AU - Stewart, Dennis

AU - Overstreet, James

AU - Vandevoort, Catherine A.

PY - 1996

Y1 - 1996

N2 - This study examined the changes in cellular glucose uptake, cAMP-dependent protein kinase (PKA), and progesterone production induced by 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) in human luteinizing granulosa cells (LGCs) in culture. The role of Ah receptor on TCDD-mediated toxicity in human LGCs was investigated. Treatment of human LGCs with TCDD produced a time- and dose-dependent decrease in the cellular uptake of glucose. The Vmax and the Km of glucose transport were decreased by TCDD treatment. Furthermore, cytochalasin B, a specific inhibitor of faciliative glucose transporter proteins, totally abolished the portion of glucose transport activity that is sensitive to TCDD. Pretreatment of the cells with the Ah receptor blockers 4,7-phenanthroline and alpha-naphthoflavone antagonised the effect of TCDD on 3H-Me-glucose uptake. Structure-activity relationship studies with TCDD and three dioxin congeners revealed a rank order for their potency in the inhibition of glucose transport as follows: TCDD > 1,2,3,7,8-PCDD > 1,2,4,7,8-PCDD > 2,7-DCDD. Such a rank order is consistent with the previously determined biological activity of TCDD and the other dioxin congeners. Treatment of cells for 48 h with 10 nM TCDD substantially reduced PKA and progesterone production. The inhibitory effect of TCDD on progesterone production was more pronounced in the presence of insulin (10 μg/mL) and D-glucose (13.3 mM). However, cytochalasin B abolished the effect of TCDD on progesterone production. Forskolin (adenylate cyclase activator) abolished the effect of TCDD on glucose uptake and progesterone production but it did not affect the action of TCDD on PKA activity. A relationship between glucose transporting activity and progesterone production in human LGCs treated with TCDD is indicated by several lines of evidence: a) cytochalasin B downregulated glucose transporting activity and progesterone production, b) insulin plus D-glucose downregulated glucose uptake and amplified the negative effect of TCDD on progesterone production, and c) forskolin abolished the negative effect of TCDD on glucose transporting activity and on progesterone production. From the present data we conclude that glucose transporting activity can be used as a sensitive biomarker to detect the very early response to TCDD in human steroid-producing cells and that effect of TCDD on steroid production is mediated through the cAMP-dependent protein kinase.

AB - This study examined the changes in cellular glucose uptake, cAMP-dependent protein kinase (PKA), and progesterone production induced by 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) in human luteinizing granulosa cells (LGCs) in culture. The role of Ah receptor on TCDD-mediated toxicity in human LGCs was investigated. Treatment of human LGCs with TCDD produced a time- and dose-dependent decrease in the cellular uptake of glucose. The Vmax and the Km of glucose transport were decreased by TCDD treatment. Furthermore, cytochalasin B, a specific inhibitor of faciliative glucose transporter proteins, totally abolished the portion of glucose transport activity that is sensitive to TCDD. Pretreatment of the cells with the Ah receptor blockers 4,7-phenanthroline and alpha-naphthoflavone antagonised the effect of TCDD on 3H-Me-glucose uptake. Structure-activity relationship studies with TCDD and three dioxin congeners revealed a rank order for their potency in the inhibition of glucose transport as follows: TCDD > 1,2,3,7,8-PCDD > 1,2,4,7,8-PCDD > 2,7-DCDD. Such a rank order is consistent with the previously determined biological activity of TCDD and the other dioxin congeners. Treatment of cells for 48 h with 10 nM TCDD substantially reduced PKA and progesterone production. The inhibitory effect of TCDD on progesterone production was more pronounced in the presence of insulin (10 μg/mL) and D-glucose (13.3 mM). However, cytochalasin B abolished the effect of TCDD on progesterone production. Forskolin (adenylate cyclase activator) abolished the effect of TCDD on glucose uptake and progesterone production but it did not affect the action of TCDD on PKA activity. A relationship between glucose transporting activity and progesterone production in human LGCs treated with TCDD is indicated by several lines of evidence: a) cytochalasin B downregulated glucose transporting activity and progesterone production, b) insulin plus D-glucose downregulated glucose uptake and amplified the negative effect of TCDD on progesterone production, and c) forskolin abolished the negative effect of TCDD on glucose transporting activity and on progesterone production. From the present data we conclude that glucose transporting activity can be used as a sensitive biomarker to detect the very early response to TCDD in human steroid-producing cells and that effect of TCDD on steroid production is mediated through the cAMP-dependent protein kinase.

KW - cAMP signaling

KW - Glucose transporters

KW - Human luteinizing granulosa cells

KW - Progesterone

KW - TCDD

UR - http://www.scopus.com/inward/record.url?scp=0030140466&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=0030140466&partnerID=8YFLogxK

M3 - Article

C2 - 8738555

AN - SCOPUS:0030140466

VL - 10

SP - 191

EP - 198

JO - Reproductigve Toxicoloy

JF - Reproductigve Toxicoloy

SN - 0890-6238

IS - 3

ER -