Beyond Biomaterials: Engineering the Wound Bed

Project: Research project

Project Details


DESCRIPTION (provided by applicant): In the United States alone, there are over 6 million cases of chronic skin wounds each year, including but not limited to venous stasis ulcers, diabetic ulcers, and pressure sores, impacting two percent of the entire population and 15% of the elderly. Consequently, there is over $8.5 billion spent on chronic wound care products with 50 million surgical procedures to correct such wounds, resulting in more than $20 billion spent on treatment. And, unfortunately, the incidence of such wounds only rises with increasing age. Chronic wounds not only disrupt the quality of life for millions of citizens but also impart a socio-economic burden in terms of lost productivity and health care dollars. We propose to assemble an interdisciplinary team of accomplished investigators at the University of California, Davis and the University of Wisconsin-Madison, who aim to go beyond conventional strategies for treating pathologic wounds by developing novel strategies to repair dysregulated wounds by engineering of the wound bed itself. Our novel, core proposition is that it should be possible to alter the surface chemistry and biophysical characteristics of the wound bed to promote favorable cell behaviors that accelerate wound healing. The approach seeks to translate recent advances in protein chemistry, surface chemical functionalization and nanofabrication to the clinical setting with potential to profoundly impact the quality of patient lives. The proposed program will harness accomplished investigators in diverse disciplines across two campuses to a singular goal: Development and optimization of novel methods to engineer the wound bed itself to promote favorable patient outcomes
Effective start/end date9/30/098/31/12


  • National Institutes of Health: $2,086,848.00
  • National Institutes of Health: $1,913,152.00


  • Medicine(all)


Explore the research topics touched on by this project. These labels are generated based on the underlying awards/grants. Together they form a unique fingerprint.